q-Laguerre and Wall polynomials are related by the Fourier - Gauss transform

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1997 J. Phys. A: Math. Gen. 30 L429
(http://iopscience.iop.org/0305-4470/30/13/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.72
The article was downloaded on 02/06/2010 at 04:24

Please note that terms and conditions apply.

LETTER TO THE EDITOR

q-Laguerre and Wall polynomials are related by the Fourier-Gauss transform

M K Atakishiyeva \dagger and N M Atakishiyev $\ddagger \S$
\dagger Facultad de Ciencias, UAEM, Av. Universidad 1001, 62210 Cuernavaca, Morelos, Mexico \ddagger Instituto de Matematicas, UNAM, Apartado Postal 273-3, 62210 Cuernavaca, Morelos, Mexico

Received 20 February 1997

Abstract

It is shown that the q-Laguerre and Wall (or little q-Laguerre) polynomials are interrelated by the Fourier-Gauss transform. In the limit when the degree of these polynomials tends to infinity, this integral transform provides the relation between Jackson's second and third q-Bessel functions.

The q-Laguerre polynomials $L_{n}^{(\alpha)}(x ; q)$ are defined [1-3] as

$$
\begin{align*}
L_{n}^{(\alpha)}(x ; q) & :=\frac{\left(q^{\alpha+1} ; q\right)_{n}}{(q ; q)_{n}}{ }_{1} \phi_{1}\left(q^{-n} ; q^{\alpha+1} ; q,-x q^{n+\alpha+1}\right) \\
& =\frac{\left(q^{\alpha+1} ; q\right)_{n}}{(q ; q)_{n}} \sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k} x^{k}}{\left(q^{\alpha+1}, q ; q\right)_{k}} q^{k(n+\alpha)+k(k+1) / 2} \tag{1}
\end{align*}
$$

where we have used the standard notation for the q-shifted factorial $(z ; q)_{n}$ and the basic hypergeometric series ${ }_{1} \phi_{1}(a ; b ; q, z)$ (see, for example, [4] or [5]). These polynomials can be generated by the three-term recurrence relation

$$
\begin{align*}
& -q^{2 n+\alpha+1} x L_{n}^{(\alpha)}(x ; q)=\left(1-q^{n+1}\right) L_{n+1}^{(\alpha)}(x ; q)-\left[\left(1-q^{n+1}\right)+q\left(1-q^{n+\alpha}\right)\right] L_{n}^{(\alpha)}(x ; q) \\
& \quad+q\left(1-q^{n+\alpha}\right) L_{n-1}^{(\alpha)}(x ; q) \tag{2}
\end{align*}
$$

with the initial conditions $L_{-1}^{(\alpha)}(x ; q)=0$ and $L_{0}^{(\alpha)}(x ; q)=1$. In the limit when the parameter q tends to 1 , they converge to the ordinary Laguerre polynomials $L_{n}^{(\alpha)}(x)$, namely

$$
\begin{equation*}
\lim _{q \rightarrow 1} L_{n}^{(\alpha)}((1-q) x ; q)=L_{n}^{(\alpha)}(x) \tag{3}
\end{equation*}
$$

Since the Stieltjes and Hamburger moment problems associated with the q-Laguerre polynomials are indeterminate, the measure with respect to which they are orthogonal is not unique [3, 6-8]. Examples of absolutely continuous and discrete orthogonality relations for $L_{n}^{(\alpha)}(x ; q)$ have been given by Moak [3]. He has also proved that the q-Laguerre polynomials converge to the entire function

$$
\begin{equation*}
\lim _{n \rightarrow \infty} L_{n}^{(\alpha)}(x ; q)=x^{-\alpha / 2} J_{\alpha}^{(2)}(2 \sqrt{x} ; q) \tag{4}
\end{equation*}
$$

§ On leave of absence from: Institute of Physics, Azerbaijan Academy of Sciences, Baku 370143, Azerbaijan. E-mail address: natig@matcuer.unam.mx
the roots of which are the mass points of an extreme measure. Jackson's q-Bessel function $J_{\alpha}^{(2)}(z ; q)$ in (4) is defined $[9,10]$ as

$$
\begin{equation*}
J_{\alpha}^{(2)}(z ; q):=\frac{1}{(q ; q)_{\alpha}} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+\alpha)}}{\left(q^{\alpha+1}, q ; q\right)_{n}}\left(\frac{z}{2}\right)^{2 n+\alpha} \tag{5}
\end{equation*}
$$

Applying the inversion formula (with respect to the change $q \rightarrow q^{-1}$)

$$
\begin{equation*}
\left(z ; q^{-1}\right)_{n}=q^{-n(n-1) / 2}(-z)^{n}\left(z^{-1} ; q\right)_{n} \tag{6}
\end{equation*}
$$

to the definition (1) gives the relation

$$
\begin{align*}
L_{n}^{(\alpha)}\left(x ; q^{-1}\right) & =q^{-n \alpha} \frac{\left(q^{\alpha+1} ; q\right)_{n}}{(q ; q)_{n}} \sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}}{\left(q^{\alpha+1}, q ; q\right)_{k}}(-q x)^{k} \\
& =q^{-n \alpha} \frac{\left(q^{\alpha+1} ; q\right)_{n}}{(q ; q)_{n}} p_{n}\left(-x ; q^{\alpha} \mid q\right) \tag{7}
\end{align*}
$$

between the q-Laguerre and Wall (or little q-Laguerre) polynomials $p_{n}(x ; a \mid q)$ [5]. The latter polynomials are defined [11] as

$$
\begin{equation*}
p_{n}(x ; a \mid q):={ }_{2} \phi_{1}\left(q^{-n}, 0 ; a q ; q, q x\right)=\sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}(q x)^{k}}{(a q, q ; q)_{k}} . \tag{8}
\end{equation*}
$$

In exactly the same way as for (4), one can prove that the polynomials (8) also converge to the entire function

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p_{n}\left(q^{n} x ; q^{\alpha} \mid q\right)=\frac{(q ; q)_{\alpha}}{x^{\alpha / 2}} J_{\alpha}^{(3)}(\sqrt{x} ; q) \tag{9}
\end{equation*}
$$

where Jackson's third q-Bessel function $J_{\alpha}^{(3)}(z ; q)$ is given $[12,13]$ by the relation

$$
\begin{equation*}
J_{\alpha}^{(3)}(z ; q):=\frac{1}{(q ; q)_{\alpha}} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(n+1) / 2}}{\left(q^{\alpha+1}, q ; q\right)_{n}} z^{2 n+\alpha} \tag{10}
\end{equation*}
$$

This short letter claims to prove that the polynomials (1) and (8) are in fact related to each other by the classical Fourier-Gauss transform. As the degree of both polynomials tends to infinity, this integral transform in turn yields the corresponding relation between the q-Bessel functions (5) and (10).

To that end, let us denote $q=\exp \left(-2 \kappa^{2}\right)$ and evaluate an integral

$$
\begin{equation*}
\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} L_{n}^{(\alpha)}\left(t \mathrm{e}^{2 \kappa s} ; q\right) \exp \left(2 \mathrm{i} r s-s^{2}\right) \mathrm{d} s \tag{11}
\end{equation*}
$$

where t is a constant. Substitute the finite sum (1) for $L_{n}^{(\alpha)}(x ; q)$ with respect to the variable $x=t \mathrm{e}^{2 \kappa s}$ in (11) and use the well-known Fourier transform

$$
\begin{equation*}
\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp \left(2 \mathrm{i} r s-s^{2}\right) \mathrm{d} s=\exp \left(-r^{2}\right) \tag{12}
\end{equation*}
$$

for the Gauss exponential function $\exp \left(-s^{2}\right)$. This gives

$$
\begin{equation*}
\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} L_{n}^{(\alpha)}\left(t \mathrm{e}^{2 \kappa s} ; q\right) \exp \left(2 \mathrm{i} r s-s^{2}\right) \mathrm{d} s=q^{n \alpha} L_{n}^{(\alpha)}\left(-q^{n+\alpha-1 / 2} t \mathrm{e}^{2 \mathrm{i} \kappa r} ; q^{-1}\right) \exp \left(-r^{2}\right) \tag{13}
\end{equation*}
$$

Taking equation (7) into account, this result can be written in the equivalent form

$$
\begin{align*}
& \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} L_{n}^{(\alpha)} \\
& \quad\left(t \mathrm{e}^{2 \kappa s} ; q\right) \exp \left(2 \mathrm{i} r s-s^{2}\right) \mathrm{d} s \tag{14}\\
& \quad=\frac{\left(q^{\alpha+1} ; q\right)_{n}}{(q ; q)_{n}} p_{n}\left(t q^{n+\alpha-1 / 2} \mathrm{e}^{2 \mathrm{i} \kappa r} ; q^{\alpha} \mid q\right) \exp \left(-r^{2}\right)
\end{align*}
$$

Note that since the q-Charlier polynomials $C_{n}\left(x ;-q^{-\alpha} ; q\right)=(q ; q)_{n} L_{n}^{(\alpha)}(-x ; q)$, one may regard (14) as a Fourier-Gauss transform between the q-Charlier and Wall polynomials (8).

In view of the limiting relations (4) and (9) we may let $n \rightarrow \infty$ on both sides of (14). After some simple manipulation, this results in the Fourier-Gauss transform

$$
\begin{equation*}
\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} J_{\alpha}^{(2)}\left(2 t \mathrm{e}^{\kappa s} ; q\right) \exp \left(2 \mathrm{i} r s-s^{2}\right) \mathrm{d} s=q^{\alpha(2-3 \alpha) / 8} J_{\alpha}^{(3)}\left(q^{(\alpha-1) / 4} t \mathrm{e}^{\mathrm{i} \kappa r} ; q\right) \exp \left(-r^{2}\right) \tag{15}
\end{equation*}
$$

relating Jackson's second and third q-Bessel functions (5) and (10), respectively. Integral transforms of this type for Jackson's q-Bessel functions $J_{\alpha}^{(i)}(z ; q), i=1,2,3$, have recently been discussed in [14]. It has been proved in particular that (see [14, equation (21)])
$J_{\alpha}^{(3)}\left(q^{(\alpha-1) / 4} t \mathrm{e}^{-\kappa x} ; q\right) \exp \left(-x^{2}\right)=q^{\alpha(\alpha-2) / 8} \int_{-\infty}^{\infty} \frac{\mathrm{d} y}{\sqrt{\pi}} J_{\alpha}^{(1)}\left(2 t \mathrm{e}^{\mathrm{i} \kappa y} ; q\right) \exp \left(2 \mathrm{i} x y-y^{2}\right)$
where $[9,10]$

$$
\begin{equation*}
J_{\alpha}^{(1)}(z ; q):=\frac{1}{(q ; q)_{\alpha}} \sum_{n=0}^{\infty} \frac{(-1)^{n}(z / 2)^{2 n+\alpha}}{\left(q^{\alpha+1}, q ; q\right)_{n}} . \tag{17}
\end{equation*}
$$

By the aid of the inversion formula (6) it is not hard to verify that the Fourier-Gauss transforms (15) and (16) are interrelated by a replacement of the base $q \rightarrow q^{-1}$.

Our avowed interest in the classical Fourier integral transform is in its usefulness as a tool in revealing close relations between various q-special functions. Some other instances of such remarkable pertinence of the Fourier transformations have been already discussed in [14-16]. We believe that further study in this direction will help to fathom the properties of q-special functions.

Discussions with F Leyvraz and K B Wolf are gratefully acknowledged. This work is partially supported by the UNAM-DGAPA project IN106595.

References

[1] Hahn W 1949 Über orthogonalpolynome, die q-differenzengleichungen genügen Math. Nachr. 2 4-34
[2] Exton H 1977 Basic Laguerre polynomials Pure Appl. Math. Sci. 5 19-24
[3] Moak D S 1981 The q-analogue of the Laguerre polynomials J. Math. Anal. Appl. 81 20-47
[4] Gasper G and Rahman M 1990 Basic Hypergeometric Series (Cambridge: Cambridge University Press)
[5] Koekoek R and Swarttouw R F 1994 The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report 94-05, Delft University of Technology
[6] Shohat J A and Tamarkin J D 1970 The Problem of Moments (Providence, RI: American Mathematical Society)
[7] Akhiezer N I 1965 The Classical Moment Problem and Some Related Questions in Analysis (Edinburgh: Oliver and Boyd)
[8] Ismail M E H and Rahman M 1997 The q-Laguerre and related moment problems J. Math. Anal. Appl. submitted
[9] Jackson F H 1904 On generalized functions of Legendre and Bessel Trans. Roy. Soc. Edin. 41 1-28
[10] Ismail M E H 1982 The zeroes of basic Bessel functions, the functions $J_{v+a x}(x)$ and the associated orthogonal polynomials J. Math. Anal. Appl. 86 1-19
[11] Wall H S 1941 A continued fraction related to some partition formulas of Euler Am. Math. Monthly 48 102-108
[12] Jackson F H 1905 The application of basic numbers to Bessel's and Legendre's functions Proc. Lond. Math. Soc. 2 192-220
[13] Ismail M E H 1997 Some properties of Jackson's third q-Bessel function J. Approx. Theory to appear
[14] Atakishiyev N M 1997 Fourier-Gauss transforms of q-exponential and q-Bessel functions Proc. 2nd Conf. 'Symmetries and Integrability of Difference Equations' (University of Kent, Canterbury, 1-5 July 1996) to appear
[15] Atakishiyev N M and Nagiyev Sh M 1994 On the wave functions of a covariant linear oscillator Theor. Math. Phys. 98 162-166
Atakishiyev N M and Nagiyev Sh M 1994 On the Rogers-Szegö polynomials J. Phys. A: Math. Gen. 27 L611-5
[16] Atakishiyev N M 1996 On a one-parameter family of q-exponential functions J. Phys. A: Math. Gen. 29 L223-7
Atakishiyev N M 1996 On the Fourier-Gauss transforms of some q-exponential and q-trigonometric functions J. Phys. A: Math. Gen. 29 7177-81

