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LETTER TO THE EDITOR

q-Laguerre and Wall polynomials are related by the
Fourier–Gauss transform

M K Atakishiyeva† and N M Atakishiyev‡§
† Facultad de Ciencias, UAEM, Av. Universidad 1001, 62210 Cuernavaca, Morelos, Mexico
‡ Instituto de Matematicas, UNAM, Apartado Postal 273-3, 62210 Cuernavaca, Morelos, Mexico

Received 20 February 1997

Abstract. It is shown that theq-Laguerre and Wall (or littleq-Laguerre) polynomials are
interrelated by the Fourier–Gauss transform. In the limit when the degree of these polynomials
tends to infinity, this integral transform provides the relation between Jackson’s second and third
q-Bessel functions.

The q-Laguerre polynomialsL(α)n (x; q) are defined [1–3] as

L(α)n (x; q) := (qα+1; q)n
(q; q)n 1φ1(q

−n; qα+1; q,−xqn+α+1)

= (qα+1; q)n
(q; q)n

n∑
k=0

(q−n; q)k xk
(qα+1, q; q)k q

k(n+α)+k(k+1)/2 (1)

where we have used the standard notation for theq-shifted factorial(z; q)n and the basic
hypergeometric series1φ1(a; b; q, z) (see, for example, [4] or [5]). These polynomials can
be generated by the three-term recurrence relation

−q2n+α+1xL(α)n (x; q) = (1− qn+1) L
(α)

n+1(x; q)− [(1− qn+1)+ q(1− qn+α)] L(α)n (x; q)

+q(1− qn+α) L(α)n−1(x; q) (2)

with the initial conditionsL(α)−1(x; q) = 0 and L(α)0 (x; q) = 1. In the limit when the
parameterq tends to 1, they converge to the ordinary Laguerre polynomialsL(α)n (x), namely

lim
q→1

L(α)n ((1− q)x; q) = L(α)n (x) . (3)

Since the Stieltjes and Hamburger moment problems associated with theq-Laguerre
polynomials are indeterminate, the measure with respect to which they are orthogonal is
not unique [3, 6–8]. Examples of absolutely continuous and discrete orthogonality relations
for L(α)n (x; q) have been given by Moak [3]. He has also proved that theq-Laguerre
polynomials converge to the entire function

lim
n→∞L

(α)
n (x; q) = x−α/2 J (2)α (2

√
x; q) (4)
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the roots of which are the mass points of an extreme measure. Jackson’sq-Bessel function
J (2)α (z; q) in (4) is defined [9, 10] as

J (2)α (z; q) := 1

(q; q)α
∞∑
n=0

(−1)nqn(n+α)

(qα+1, q; q)n
( z

2

)2n+α
. (5)

Applying the inversion formula (with respect to the changeq → q−1)

(z; q−1)n = q−n(n−1)/2(−z)n (z−1; q)n (6)

to the definition (1) gives the relation

L(α)n (x; q−1) = q−nα (q
α+1; q)n
(q; q)n

n∑
k=0

(q−n; q)k
(qα+1, q; q)k (−qx)

k

= q−nα (q
α+1; q)n
(q; q)n pn(−x; qα|q) (7)

between theq-Laguerre and Wall (or littleq-Laguerre) polynomialspn(x; a|q) [5]. The
latter polynomials are defined [11] as

pn(x; a|q) := 2φ1(q
−n, 0; aq; q, qx) =

n∑
k=0

(q−n; q)k (qx)k
(aq, q; q)k . (8)

In exactly the same way as for (4), one can prove that the polynomials (8) also converge
to the entire function

lim
n→∞pn(q

nx; qα|q) = (q; q)α
xα/2

J (3)α (
√
x; q) (9)

where Jackson’s thirdq-Bessel functionJ (3)α (z; q) is given [12, 13] by the relation

J (3)α (z; q) := 1

(q; q)α
∞∑
n=0

(−1)nqn(n+1)/2

(qα+1, q; q)n z2n+α . (10)

This short letter claims to prove that the polynomials (1) and (8) are in fact related to
each other by the classical Fourier–Gauss transform. As the degree of both polynomials
tends to infinity, this integral transform in turn yields the corresponding relation between
the q-Bessel functions (5) and (10).

To that end, let us denoteq = exp(−2κ2) and evaluate an integral

1√
π

∞∫
−∞

L(α)n (te
2κs; q) exp(2irs − s2) ds (11)

wheret is a constant. Substitute the finite sum (1) forL(α)n (x; q) with respect to the variable
x = te2κs in (11) and use the well-known Fourier transform

1√
π

∞∫
−∞

exp(2irs − s2) ds = exp(−r2) (12)

for the Gauss exponential function exp(−s2). This gives

1√
π

∞∫
−∞

L(α)n (te
2κs; q) exp(2irs − s2) ds = qnα L(α)n (−qn+α−1/2 te2iκr; q−1) exp(−r2) .

(13)
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Taking equation (7) into account, this result can be written in the equivalent form

1√
π

∞∫
−∞

L(α)n (te
2κs; q) exp(2irs − s2) ds

= (qα+1; q)n
(q; q)n pn(tq

n+α−1/2 e2iκr; qα|q) exp(−r2) . (14)

Note that since theq-Charlier polynomialsCn(x;−q−α; q) = (q; q)n L(α)n (−x; q), one may
regard (14) as a Fourier–Gauss transform between theq-Charlier and Wall polynomials (8).

In view of the limiting relations (4) and (9) we may letn→∞ on both sides of (14).
After some simple manipulation, this results in the Fourier–Gauss transform

1√
π

∞∫
−∞

J (2)α (2teκs; q) exp(2irs − s2) ds = qα(2−3α)/8 J (3)α (q(α−1)/4teiκr; q) exp(−r2)

(15)

relating Jackson’s second and thirdq-Bessel functions (5) and (10), respectively. Integral
transforms of this type for Jackson’sq-Bessel functionsJ (i)α (z; q), i = 1, 2, 3 , have
recently been discussed in [14]. It has been proved in particular that (see [14, equation (21)])

J (3)α (q(α−1)/4te−κx; q) exp(−x2) = qα(α−2)/8

∞∫
−∞

dy√
π
J (1)α (2teiκy; q) exp

(
2ixy − y2

)
(16)

where [9, 10]

J (1)α (z; q) := 1

(q; q)α
∞∑
n=0

(−1)n (z/2)2n+α

(qα+1, q; q)n . (17)

By the aid of the inversion formula (6) it is not hard to verify that the Fourier–Gauss
transforms (15) and (16) are interrelated by a replacement of the baseq → q−1.

Our avowed interest in the classical Fourier integral transform is in its usefulness as a
tool in revealing close relations between variousq-special functions. Some other instances
of such remarkable pertinence of the Fourier transformations have been already discussed
in [14–16]. We believe that further study in this direction will help to fathom the properties
of q-special functions.

Discussions with F Leyvraz and K B Wolf are gratefully acknowledged. This work is
partially supported by the UNAM–DGAPA project IN106595.
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